Roll-to-Roll Processing of Inverted Polymer Solar Cells using Hydrated Vanadium(V)Oxide as a PEDOT:PSS Replacement

نویسندگان

  • Nieves Espinosa
  • Henrik Friis Dam
  • David M. Tanenbaum
  • Jens W. Andreasen
  • Mikkel Jørgensen
  • Frederik C. Krebs
چکیده

The use of hydrated vanadium(V)oxide as a replacement of the commonly employed hole transporting material PEDOT:PSS was explored in this work. Polymer solar cells were prepared by spin coating on glass. Polymer solar cells and modules comprising 16 serially connected cells were prepared using full roll-to-roll (R2R) processing of all layers. The devices were prepared on flexible polyethyleneterphthalate (PET) and had the structure PET/ITO/ZnO/P3HT:PCBM/V₂O₅·(H₂O)n/Ag. The ITO and silver electrodes were processed and patterned by use of screen printing. The zinc oxide, P3HT:PCBM and vanadium(V)oxide layers were processed by slot-die coating. The hydrated vanadium(V)oxide layer was slot-die coated using an isopropanol solution of vanadyl-triisopropoxide (VTIP). Coating experiments were carried out to establish the critical thickness of the hydrated vanadium(V)oxide layer by varying the concentration of the VTIP precursor over two orders of magnitude. Hydrated vanadium(V)oxide layers were characterized by profilometry, scanning electron microscopy, energy dispersive X-ray spectroscopy, and grazing incidence wide angle X-ray scattering. The power conversion efficiency (PCE) for completed modules was up to 0.18%, in contrast to single cells where efficiencies of 0.4% were achieved. Stability tests under indoor and outdoor conditions were accomplished over three weeks on a solar tracker.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Flexible polymer solar cell modules with patterned vanadium suboxide layers deposited by an electro-spray printing method

Vanadium suboxide (VOx) layers deposited by an electro-spray (e-spray) printing method were applied to the fabrication of high efficiency patterned polymer solar cell (PSC) modules. By tailoring surface tension and the atomization condition of the e-sprayed sol precursor, e-sprayed VOx layers on top of both hydrophilic and hydrophobic surfaces were successfully obtained, which enabled alternati...

متن کامل

Degradation patterns in water and oxygen of an inverted polymer solar cell.

The spatial distribution of reaction products in multilayer polymer solar cells induced by water and oxygen atmospheres was mapped and used to elucidate the degradation patterns and failure mechanisms in an inverted polymer solar cell. The active material comprised a bulk heterojunction formed by poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) sandwiched betw...

متن کامل

Electron and Hole Transport Layers: Their Use in Inverted Bulk Heterojunction Polymer Solar Cells

Bulk heterojunction polymer solar cells (BHJ PSCs) are very promising organic-based devices for low-cost solar energy conversion, compatible with roll-to-roll or general printing methods for mass production. Nevertheless, to date, many issues should still be addressed, one of these being the poor stability in ambient conditions. One elegant way to overcome such an issue is the so-called “invert...

متن کامل

A Semi-transparent Plastic Solar Cell Fabricated by a Lamination Process

Polymer solar cells have attracted broad research interest because of their advantageous solution processing capability and formation of low-cost, flexible, and large area electronic devices. However, the efficiency of polymer solar cells is still low compared to that of inorganic solar cells. Therefore, it is a challenge to find a polymer that has all the required properties for high efficienc...

متن کامل

Efficient inverted polymer solar cells

We investigate the effect of interfacial buffer layers—vanadium oxide V2O5 and cesium carbonate Cs2CO3 —on the performance of polymer solar cells based on regioregular poly3-hexylthiophene and 6,6 -phenyl C60 butyric acid methyl ester blend. The polarity of solar cells can be controlled by the relative positions of these two interfacial layers. Efficient inverted polymer solar cells were fabric...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2011